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The ESA/ESO Astronomy Exercise Series 6

The mass of the black hole 
at the centre of our Milky Way
Astronomy	is	an	accessible	and	visual	science,	making	it	ideal	for	educational	purposes.	Over	the	last	
few	years	the	NASA/ESA	Hubble	Space	Telescope	and	the	ESO	telescopes	at	the	La	Silla	and	Paranal	
Observatories	in	Chile	have	presented	ever	deeper	and	more	spectacular	views	of	the	Universe.	However,	
Hubble	and	the	ESO	telescopes	have	not	just	provided	stunning	new	images,	they	are	also	invaluable	
tools	for	astronomers.	The	telescopes	have	excellent	spatial/angular	resolution	(image	sharpness)	and	
allow	astronomers	to	peer	further	out	into	the	Universe	than	ever	before	and	answer	long-standing	
unsolved	questions.
The	analysis	of	such	observations,	while	often	highly	sophisticated	in	detail,	is	at	times	sufficiently	
simple	in	principle	to	give	secondary-level	students	the	opportunity	to	repeat	it	for	themselves.

This	series	of	exercises	has	been	produced	by	the	European	partner	in	the	Hubble	project,	ESA	
(the	European	Space	Agency)	–	which	has	access	to	15%	of	the	observing	time	with	Hubble	–	
together	with	ESO	(the	European	Southern	Observatory).

Figure 1: The ESO Very Large Telescope
The ESO Very Large Telescope (VLT) at the Paranal Observatory (Atacama, Chile) is the world’s largest and most advanced optical 
telescope. With its supreme optical resolution and unsurpassed surface area, the VLT produces very sharp images and can record 
light from the faintest and most remote objects in the Universe.
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Black holes, an introduction 
	
Black	Holes	may	seem	mysterious,	but	they	
consist	of	the	same	ordinary	matter	that	makes	
up	the	Sun,	the	Earth	and	everything	on	it.	The	
main	difference	is	that	the	matter	in	a	black	
hole	is	squeezed	into	an	incredibly	small	vol-
ume.	If	the	Earth	were	to	become	a	black	hole,	
it	would	have	to	be	compressed	to	the	size	of	a	
marble	–	about	1	centimetre	in	diameter.	New-
ton’s	law	of	gravitation:	

2
	

	

tells	us	that	the	attractive	force	F	between	two	
masses	m1	and	m2	increases	as	the	square	of	
the	distance	r	between	the	two	bodies	dimin-
ishes.	Here	on	the	Earth’s	surface	we	are	about	
6378	km	from	the	Earth’s	centre.	On	a	mar-
ble-sized	Earth	we	would	only	be	0.5	cm	from	
its	centre.	This	huge	reduction	in	r	makes	the	
gravitational	attraction	more	than	a	billion	times	
greater	than	on	Earth	normally.

It	is	this	large	force	that	allows	a	lot	of	strange	
things	to	happen	to	anything	that	gets	too	close	
to	a	black	hole.	For	example,	there	is	a	point	
of	no	return,	called	“the	event	horizon”.	Once	
inside,	nothing,	not	even	light,	can	escape.	
Furthermore,	the	strong	gravitational	attraction	
close	to	the	black	hole	means	that	anything	
moving	around	it	must	travel	at	enormous	
speeds	to	avoid	spiralling	into	the	hole.	If	these	
high	velocity	pieces	of	material	collide	with	each	
other,	the	collision	is	disastrous	and	produces	
large	amounts	of	heat	and	light.	In	this	exercise	
we	will	learn	more	about	black	holes.	

How black holes got their name

The	scientist	John	Wheeler	coined	the	name	
‘black	hole’	in	1967.	It	was	termed	a	‘hole’	
because	things	that	pass	the	event	horizon	will	
never	re-emerge.	In	fact,	precisely	nothing	can	
escape	a	black	hole.	Objects	can	escape	from	the	
Earth	if	they	are	shot	away	with	speeds	larger	
than	11	km/s.	This	is	a	tremendous	velocity.	But	
to	escape	a	black	hole,	an	object	would	need	a	
velocity	greater	than	the	speed	of	light	-	about	
300000	km/s!	However,	according	to	the	theory	
of	relativity,	nothing	in	Nature	can	move	faster	
than	the	speed	of	light.	In	other	words,	not	even	
light	escapes:	it	is	truly	a	‘black’	hole.	

3

So,	things	disappear	inside	the	black	hole	never	
to	reappear.	

Originally,	many	scientists	considered	black	holes	
to	be	just	a	nice	idea	on	paper,	not	something	
that	really	existed.	Today	we	have	very	strong	
evidence	that	there	is	a	black	hole	right	at	the	
centre	of	our	own	galaxy,	the	Milky	Way.	In	this	
exercise	we	will	re-discover	this	black	hole	and	
determine	its	mass.
	
The black hole at the 
centre of our Milky Way
		
The	first	hint	that	there	might	be	a	black	hole	
lurking	at	the	centre	of	the	Milky	Way	came	
when	people	noticed	a	highly	unusual	source	
of	radio	emission	in	the	southern	constellation	
of	Sagittarius	(see	Figure	2).	This	source	was	
named	“Sagittarius	A*”	(SgrA*).	It	was	clear	
that	the	unknown	source	of	the	radio	emission	
could	not	possibly	be	a	star	and	it	was	specu-
lated	that	the	mystery	source	might	be	a
black	hole	at	the	centre	of	the	Milky	Way.	
Matter	circling	a	black	hole	at	high	speed	could	
account	for	the	unusual	radio	emission	signal.
	
Unfortunately,	a	black	hole	is	extremely	small	
and	completely	black	so	we	cannot	hope	to	
see	it	directly.	Evidence	for	a	black	hole	can	be	
obtained	by	measuring	two	quantities	near	the	
suspected	black	hole:	

(1)	the	speed	of	the	material	orbiting	it	and	

(2)	the	light	coming	from	the	area.
	
The	speed	tells	us	about	the	mass	concentrated	
in	that	volume	of	space	while	the	light	emit-
ted	tells	us	if	this	mass	could	be	in	the	form	of	
stars.	There	are	a	lot	of	stars	in	motion	at	the	
centre	of	the	Milky	Way.	In	this	part	of	the	exer-
cise	we	will	use	real	observations	from	the	centre	
of	the	Milky	Way	to	find	those	stars	and	measure	
their	speeds.	
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Figure 2: The “teapot” asterism in the constellation of Sagittarius and the field of Sagittarius A*. A 
photo of the night sky around the “teapot” part of Sagittarius. Sagittarius can best be seen from the South-
ern hemisphere. The radio source Sagittarius A* is located in the centre of the white circle.
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Gravitation
 
In	the	early	1600s	Johannes	Kepler	deduced	the	
three	laws	that	bear	his	name	and	describe	the	
way	planets	move	around	the	Sun:		

1.	Planets	move	in	elliptical	orbits	around	the	
Sun.	The	Sun	is	at	one	focal	point	of	the	ellipse.		

2.	The	area	A	crossed	by	the	line	joining	the	Sun	
and	the	moving	planet	per	unit	time	is	a	con-
stant	value:	

Δt		

3.	The	square	of	the	period	P	of	the	orbit	of	the	
planet	is	proportional	to	the	cube	of	the	semi	
major	axis	of	the	an	elliptical	orbit	(which	is	half	
the	distance	of	the	longest	axis	of	an	ellipse).	It	
was	later	shown	that	P	can	be	computed	from:

	
																				

where	G	is	the	gravitational	constant	and	
m1–	the	mass	of	the	Sun	and	m2	–	the	mass	of	
the	planet.	

Task 1 (optional task) – Ellipses

The	first	law	states	that	planets	move	in	ellipses.		
An	ellipse	with	centre	(0,0)	is	the	curve	that	
goes	through	the	points	(x,y)	which	have	the	
relation:	

																											(1)	 	
	 	 	 	

 
Take	a	=	10	and	b	=	5	and	compute	various	
points	(x,y)	using	formula	(1).	Connect	the	
points	to	draw	an	ellipse.	Repeat	this,	but	now	
for	a	=	10	and	b	=	2.	
			

?				Which	features	do	the	values	a	and	b
								correspond	to	in	the	ellipse?	Finally,
								what	kind	of	figure	does	the	ellipse
								become	when	a	=	10	and	b	=	10?
	
Figure	3	shows	an	ellipse.	The	lines	of	length	a	
and	b	are	called	the	semi-major	axis	and	semi-
minor	axis,	respectively.	An	ellipse	has	two	focal	
points.	The	total	distance	from	one	focal	point	

through	any	point	on	the	ellipse	to	the	other	
focal	point	is	a	constant	2a.	This	fact	is	used	by	
gardeners	to	make	flowerbeds	with	an	elliptical	
shape.	Put	two	pins	on	a	sheet	of	paper.	Connect	
the	pins	with	a	loose	loop	of	thread.	Now	put	a	
pencil	on	the	paper	inside	the	loop	and	move	it	
around	while	keeping	the	thread	stretched.	An	
ellipse	will	appear	with	focal	points	at	the	loca-
tion	of	the	pins.	As	the	distance	between	the	
pins	decreases	the	ellipse	will	become	rounder,	
and	eventually	form	a	circle	in	the	extreme	case	
when	the	distance	between	the	pins	is	reduced	
to	zero	and	they	are	placed	at	the	same	point.

Figure 3: An ellipse, where the semi-major and minor axes 
and the focal points (black dots) are shown. Planets orbit in 
ellipses around the Sun, which is at one focal point, as indi-
cated. 

The	second	law	is	illustrated	in	Figure	4.

Figure 4: Kepler’s second law says that a planet (the small 
dot on the ellipse) moves around the Sun (indicated by the 
encircled dot) in such a way that in equal amounts of time 
∆t the line joining planet and Sun traverses equal amounts of 
area. The equal areas each have their own shading. The orbital 
velocity is higher when the planet is close to the Sun. 

The	orbital	period	of	a	planet	is	the	time	it	takes	
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it	to	make	one	full	ellipse	around	the	Sun.	
Kepler’s	third	law	says	that	if	you	know	two	of	
the	following	three	quantities:	the	period	(P),	
the	semi-major	axis	(a)	and	the	total	mass	
(m1	+	m2)	of	Sun	and	planet	together,	you	can	
compute	the	unknown	one.

Task 2 (optional task)
The mass of Sun and Earth
 

?				Compute	the	mass	of	the	Sun	and	Earth	to-
							gether,	using	Kepler’s	Third	Law	and	the
							fact	that	the	semi-major	axis	of	the	Earth’s
							orbit	is	150	million	km	and	its	period	is	
							1	year	and	G	=	6.67∙10-11	m3	s-2	kg-1

Kepler	published	his	laws	in	1609	and	1619.	
Some	years	later,	in	1687,	Isaac	Newton	showed	
that	these	laws	are	a	consequence	of	the	univer-
sal	law	of	gravitation.	This	means	that	gravita-
tional	forces	act	on	any	two	bodies	with	mass,	
not	just	the	Sun	and	a	planet.	In	other	words,	
gravitation	makes	a	stone	fall	to	the	Earth;	it	
keeps	the	Moon	in	its	orbit;	the	Earth	in	orbit	
around	the	Sun;	and	the	Sun	in	orbit	around	
the	centre	of	the	Milky	Way	or	any	star	in	orbit	
around	a	black	hole.	From	the	1990’s	on,	astrono-
mers	have	found	stars	moving	very	fast	at	the	
centre	of	the	Milky	Way.	Could	these	high	speeds	
be	an	indication	of	a	massive	black	hole	at	the	
centre	of	our	Milky	Way?

The observations
	
Observations	of	stars	near	the	centre	of	the	
Milky	Way	are	difficult.	The	many	stars	and	dusty	
clouds	between	us	and	the	centre	obscure	our	
view	out	towards	the	centre.	Fortunately,	infrared	
light	has	a	longer	wavelength	than	visible	light	
and	is	much	less	obscured	by	the	dusty	clouds	
so	infrared	light	from	stars	at	the	centre	can	
reach	us.	A	team	of	astronomers,	led	by	German	
astronomer	Reinhard	Genzel,	has	made	images	at	
infrared	wavelengths	of	the	centre	of	the	Milky	
Way	using	the	ESO	Very	Large	Telescope	in	Chile	
(see	Figure	5)	over	many	years.

In	successive	images,	taken	at	different	times,	
the	stars	near	the	Milky	Way	centre	move	a	bit.	
One	star	in	particular,	called	S2,	has	moved	a	lot	
over	the	years.	Its	position	when	it	was	near	the	
centre	of	the	Milky	Way	is	shown	in	Figure	6.

Figure 5: A near-infrared image of the few central light-years 
of the Milky Way obtained with the NACO instrument at the 
Very Large Telescope. The compact objects are stars: blue stars 
are hot and red stars are cool. The two yellow arrows mark the 
position of the black hole candidate “Sagittarius A*” at the 
Milky Way centre. The two small yellow arrows near the centre 
mark the position of the black hole. The yellow bar below indi-
cates the centre, corresponding to an angular distance of eight 
arc-seconds. 

Figure 6: A near-infrared image of the central ~2 arc-sec-
onds of the Milky centre corresponding to a distance of ~82 
light-days. The radio source SgrA* at the Milky Way centre is 
indicated by the cross. The white dot at almost the same point 
is the star S2. 
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 Date (year)   x (arcsec)   dx (arcsec)   y (arcsec)    dy (arcsec)

	1992.226	 		0.104	 		0.003	 		-0.166	 			0.004

	1994.321	 		0.097	 		0.003	 		-0.189	 			0.004

	1995.531	 		0.087	 		0.002	 		-0.192	 			0.003

	1996.256	 		0.075	 		0.007	 		-0.197	 			0.010

	1996.428	 		0.077	 		0.002	 		-0.193	 			0.003

	1997.543	 		0.052	 		0.004	 		-0.183	 			0.006

	1998.365	 		0.036	 		0.001	 		-0.167	 			0.002

	1999.465	 		0.022	 		0.004	 		-0.156	 			0.006

	2000.474	 	-0.000	 		0.002	 		-0.103	 			0.003

	2000.523	 	-0.013	 		0.003	 		-0.113	 			0.004

	2001.502	 	-0.026	 		0.002	 		-0.068	 			0.003

	2002.252	 	-0.013	 		0.005	 			0.003	 			0.007

	2002.334	 	-0.007	 		0.003	 			0.016	 			0.004

	2002.408	 		0.009	 		0.003	 			0.023	 			0.005

	2002.575	 		0.032	 		0.002	 			0.016	 			0.003

	2002.650	 		0.037	 		0.002	 			0.009	 			0.003

	2003.214	 		0.072	 		0.001	 		-0.024	 			0.002

	2003.353	 		0.077	 		0.002	 		-0.030	 			0.002

	2003.454	 		0.081	 		0.002	 		-0.036	 			0.002

Table 1: Coordinates of star S2                       
Column 1: date on which the position of star S2 was measured (e.g., 2000.500 means exactly in the middle of 2000)
Column 2-5: x and y positions of the star and the uncertainty in both coordinates. The units are in arc-seconds. The 
putative black hole is located at (0.0, 0.0).
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The mass computation
	
With	the	positions	of	S2	listed	in	Table	1	we	can	
determine	the	mass	in	SgrA*	using	Kepler’s	laws.	
Masses	are	mentioned	in	Kepler’s	third	law.	So	
we	can	use	that	law	to	find	the	mass	of	SgrA*.	
The	law	states	that	if	you	want	to	find	the	total	
mass	m	=	mBH	+	mS,	i.e.	the	mass	of	the	black	
hole	(mBH)	and	the	star	(mS)	together,	we	need	
to	know	the	period	(P)	and	the	semi-major	axis	
(a)	of	the	stellar	orbit.
			
You	will	first	find	out	the	total	mass	and	then	
later	figure	out	how	much	belongs	to	the	black	
hole	and	how	much	to	the	star.

Task 3 – Finding a
 
You	can	determine	the	semi-major	axis	(a)	of	the	
stellar	orbit	by	fitting	an	ellipse	to	the	positions	
of	S2	as	listed	in	Table	1.	

?	
			Plot	all	positions	on	a	piece	of	measure-

								ment	paper	to	scale	or	use	a	plotting
								routine	from	a	computer	program.

?				Indicate	the	uncertainty	on	the	x	and	y					
								position	for	each	point.	You	can	do	this	
								by	drawing	bars	with	the	size	of	the	
								uncertainty.	

	
?				

Draw	an	ellipse	by	eye	that	best	matches
								these	measurements.	The	ellipse	does	not
								have	to	go	through	the	points	exactly	be-				
								cause	of	the	uncertainties	in	the	positions.	

?				
Now	measure	the	semi-major	axis	in	arc-	

								seconds.	Convert	this	to	a	length	in	light-	
								days	using	the	fact	that	2	arc-seconds	cor-
								respond	to	82	lightdays	at	the	Milky	Way	
								Centre.
	

?				
Compare	your	measurement	to	the	results

								of	others	in	your	class	and	use	this	in-
								formation	to	estimate	the	uncertainty	of
								your	measurement.	The	semi-major	axis	of
								the	ellipse	that	best	fits	the	measurements
								can	also	be	computed	more	precisely	using
								a	mathematical	formula.	Your	teacher	has
								the	result	of	such	a	computation.	If	the
								difference	between	your	measurement	and
								the	mathematical	computation	is	larger	
								than	your	uncertainty,	you	probably	have	
								underestimated	the	uncertainty	on	your	
								measurement.	If	the	difference	between	
								the	two	values	is	much	smaller	than	your
								uncertainty,	you	might	have	overestimated
								the	uncertainty.	

?				
Now	you	need	to	find	the	period	(P)	of	

								the	orbit	of	S2.	In	the	time	the	star	goes

Figure 7: Empty plot for task 3.
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around	the	black	hole	once	the	connector	–	the	
line	between	the	black	hole	and	the	star	–	maps	
out	the	area	of	the	ellipse.	The	area	(Aell)	of	an	
ellipse	is:	

Aell	=	π × a	× b	
	
Kepler’s	2nd	law	tells	you	that	the	area	traversed	
by	the	connector	is	proportional	to	the	time-
spent	in	this	area.
	
For	example,	in	half	the	period,	i.e.	P/2,	the	
connector	will	map	out	half	the	area	=	Aell	/2.
More	generally	in	the	time	∆t	it	takes	the	star	to	
get	from	position	1	to	2,	the	connector	traverses	
an	area:	

P Aell
ΔΔ           		                         (2)	

	 	 	 	 	
To	get	P	from	this	formula,	you	thus	need	to	
determine		∆A,	∆t	and	Aell.
	
Task 4 – Finding P
 
Choose	one	of	the	two	methods	below	for	this	
exercise.	
 
Method A: using paper and dividing the work

?					
Measure	Aell	and	the	∆A	between	each

									two	positions	from	the	drawing	you	made
									in	exercise	3.	Divide	this	work	over	the	
									class.	You	can	estimate	areas	by	counting
									the	squares	on	the	measurement	paper.
									Now	compute	P	from	formula	(2)	
									for	each	two	positions.	Compare	this	with
									the	result	given	by	your	teacher. 

Method B: using paper and a scale
If	you	are	reluctant	to	count	the	number	of	
squares	in	the	ellipse,	you	can	use	this	method	
of	finding	areas.	Cut	out	the	ellipse	using	scis-
sors.	Weigh	the	cut	out	ellipse	on	a	scale	that	
has	an	accuracy	of	0.01	g.	This	will	give	you	a	
value	for	Aell.		

Cut	the	area	that	was	not	crossed	by	the	line	
between	the	black	hole	and	S2	away,	and	weigh	
the	segment.	This	will	give	you	a	value	for	∆A.	
If	you	wanted	the	actual	areas,	the	masses	of	
the	paper	pieces	should	be	converted	into	square	
arc-seconds.	But	since	you	only	need	the	ratio	
of	the	areas	∆A	and	Aell,	there	is	no	reason	to	do	
this	conversion.
	

The	accuracy	of	this	method	can	be	improved	by	
gluing	the	paper	to	a	piece	of	cardboard	before	
cutting	(be	sure	to	distribute	the	glue	evenly!).	

?					
Compute	P	from	formula	(2)	using	your

									measurements	of	the	mass	of	the	seg-
									ments	of	the	ellipse.	The	value	of	∆t	can		
									be	determined	from	the	dates	of	the	
									measurement	given	in	Table	1.	Compare	
									this	with	the	result	given	by	your	teacher.

Task 5 – Finding the total mass m

?					
Now	compute	the	total	mass	m	of	star

									and	black	hole	together	using	Kepler’s	
									third	law.	

Is there really a black hole? 

How	much	of	this	mass	belongs	to	the	star	and	
how	much	belongs	to	the	black	hole?	

Stars	have	masses	which	range	from	0.08	to	
~120	Solar	masses.	The	total	mass	computed	in	
task	5	is	much	larger.	Thus,	regardless	of	what	
kind	of	star	we	are	dealing	with,	it	has	a	negli-
gible	mass	mS	compared	to	the	mass	of	the	black	
hole	mBH	(i.e.,	mBH	>>	mS	)	.	Thus	almost	all	the	
mass	in	the	total	mass	m	comes	from	the	black	
hole.	Wait	a	minute…,	do	you	actually	know	
that	this	mass	belongs	to	a	black	hole?	You	
have	only	computed	a	mass.	Perhaps	this	mass	
does	not	belong	to	a	black	hole,	although	it	is	
certainly	equivalent	to	a	large	number	of	stars.	
The	difference	between	these	two	possibilities	is	
that	stars	emit	light	and	a	black	hole	does	not.
			
	?		

	How	much	light	would	you	expect	from		
								SgrA*	if	all	this	mass	were	in	the	form	of								
								stars?
	
Task 6 – A black hole or many stars?
 
To	a	first	approximation	you	can	assume	that	all	
the	mass	belongs	to	stars	just	like	the	Sun.	The	
mass	of	the	Sun	–	the	‘solar	mass’	–	is	about	
2	× 1030	kg.		

?			How	many	suns	(Nsun)	would	you	need
									at	the	location	of	SgrA*	to	account	for
									the	mass?		
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The	luminosity	of	the	Sun	is	about	4	× 1026	W.	

?					What	is	the	luminosity	you	would	expect	
									from	the	measured	mass	under	your	as-
									sumption	of	many	‘suns’?	
	
Astronomers	often	use	‘magnitudes’	instead	of	
luminosities.	Please	read	pages	5	and	6	of	the	
Astronomical	Toolkit	to	learn	about	apparent	
and	absolute	magnitudes.	Read	page	5	on	how	
convert	between	these	two	magnitudes	using	the	
distance	equation.	The	absolute	magnitude	(M)	
of	the	Sun	is	M	=	+4.83.	The	distance	(D)	to
the	centre	of	the	Milky	Way	is	about	D	=	8.0	kpc.

?			Compute	the	apparent	magnitude	of	the
									Sun	as	if	it	were	at	the	Milky	Way	centre.
									What	would	be	the	apparent	magnitude	if	
									there	were	Nsun		Suns	at	the	location	of	
									SgrA*?	

Astronomers	have	measured	almost	no	light	com-
ing	from	the	Milky	Way	centre.	This	can	also	be	
seen	from	Figures	4	and	5.	They	show	that	the	
light	coming	from	the	location	of	SgrA*	is	less	
than	that	of	the	surrounding	stars.	The	conclu-
sion	is	that	the	Milky	Way	centre	is	much	too	
dark	to	allow	stars	to	account	for	the	measured	
mass.	So	this	mass	must	be	due	to	a	black	hole.	
	
Small and large black holes

You	might	wonder	if	black	holes	have	to	be	as	
massive	as	the	one	you	just	found	at	the	centre	
of	the	Milky	Way.	In	the	introduction	the	defini-
tion	of	a	black	hole	is	given	as	an	object	from	
which	light	cannot	escape.	Let	us	have	a	look	at	
escape	speeds	for	different	objects.
The	escape	velocity	from	a	spherical	body	with	
mass	(m)	and	radius	(r)	can	be	given	as:

																																																								(3)
																																													

																
Task 7 – What makes a black hole?
	

?					
Compute	the	escape	velocity	from

									the	Earth	using	the	Earth’s	mass	
									mEarth	=	6	× 1024	kg	and	its	radius	
									REarth	=	6378	km.	
									

Now	compute	the	escape	velocity	if	the	radius	of	
the	Earth	were	only	0.5	cm.

Finally,	compute	the	escape	velocity	if	the	Earth	
had	its	usual	radius	but	had	a	mass	that	were	
2200	times	that	of	the	Sun.

You	see	that	the	Earth	is	transformed	into	a	
black	hole	in	two	cases:	if	you	compress	it	enor-
mously	or	if	you	add	an	enormous	amount	of	
mass	to	it.	The	Sun	has	a	radius	that	is	a	little	
over	hundred	times	that	of	the	Earth.	Therefore,	
the	second	case	means	that	you	are	squeez-
ing	an	object	with	2200	times	the	mass	of	the	
Sun	into	an	object	with	a	radius	more	than	100	
times	smaller	than	the	Sun,	in	other	words,	also	
an	enormous	compression.	The	crucial	property	
that	makes	a	black	hole	a	black	hole	is	not	mass	
or	radius,	but	‘compactness’.	This	is	the	ratio	of	
mass	to	radius,	and	equation	(3)	shows	this	in	
mathematical	terms.	

Task 8 (optional task)
If you were a black hole?

Does	the	compactness	mean	that	you	could	have	
black	hole	masses	much	smaller	than	the	Earth	
provided	that	you	make	them	very	small?	

?		Take	the	mass	of	your	own	body	and	com-
								pute	the	radius	needed	to	get	an	escape
								velocity	equal	to	the	speed	of	light.	This	is	
								the	radius	you	would	have	to	squeeze	your
								self	in	order	to	transform	yourself	into
								a	black	hole.	Compare	this	radius	to	the
								typical	size	of	one	atom:	2	×	10-10	m.

Conclusion

You	see	that	anything,	the	Sun,	the	Earth	and	
even	you	could	be	a	black	hole	if	you	were	able	
to	make	it	compact	enough.	However,	in	the	
Universe	we	have	only	found	black	holes	with	
masses	larger	than	a	solar	mass	so	far.	Some-
times	they	are	much	larger,	as	for	the	one	you	
found	in	SgrA*	at	the	centre	of	the	Milky	Way.	
This	is	not	too	unexpected.	You	yourself	do	not	
collapse	into	a	black	hole	spontaneously.	It	
would	require	a	kind	of	‘compression-machine’	
that	neither	mankind	nor	nature	has.	The	same	
holds	for	the	Earth.	It	will	not	collapse	by	itself.	
Matter	is	sturdy	enough	that	the	inner	layers	of	
the	Earth	can	support	the	layers	on	top	of	them.	
Only	in	stars	much	heavier	than	the	Sun,	is	the	
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matter	at	the	centre	unable	to	support	the	lay-
ers	on	top	of	it	indefinitely.	Initially,	such	a	star	
resists	its	collapse	by	burning	fuel	at	its	core	
to	produce	light	and	heat	just	like	the	Sun.	The	
heat	and	pressure	help	the	inner	layers	support	
the	outer	layers.	However,	at	some	point	the	star	
runs	out	of	fuel	and	stops	shining.	At	this	point	
the	inner	layers	cannot	resist	the	pressure	from	
the	outer	layers	anymore	and	the	star	collapses	
into	a	black	hole	–	astronomers	call	such	an	
event	a	‘supernova’.

The	universal	tale	thus	comes	to	a	conclusion.	
If	you	are	too	small	in	this	Universe	you	run	no	
risk	of	collapse,	but…you	do	not	shine.	If	you	
are	too	large,	you	will	shine	brightly	in	life	but	
end	burned-out	and	black.	If	you	can	find	a	bal-
ance	between	these	two	extremes,	like	our	Sun,	
you	can	combine	a	bright	life	with	a	gentle	end.	
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Introduction

Goal:	The	principal	goal	of	this	exercise	is	to	determine	the	mass	of	the	black	hole	at	the	centre	of	our	
own	Milky	Way.	The	underlying	intent	is	to	explain	the	basic	properties	of	black	holes	and	to	counter	
some	misconceptions	about	them.
	
Pre-requisite	knowledge:	A	firm	grasp	of	basic	mathematics	and	some	idea	of	ellipses	and	Kepler’s	Laws	
on	orbits,	although	the	latter	two	are	discussed	in	the	exercise.

Optional	tasks:	Tasks	1,	2	and	8	are	indicated	as	optional	because	they	are	not	essential	for	understand-
ing	basic	black	hole	properties	and	estimating	the	mass	of	the	black	hole	at	the	centre	of	the	Milky	
Way.	

Sources for material 

This	exercise	is	based	mainly	on	the	observations	of	S2	presented	in	the	article	Schödel	et	al.	(2003)	
which	is	available	on	the	website	of	the	Astrophysical	Journal	(subscription	needed).	Alternatively,	a	
similar	version	of	the	article	can	be	obtained	at	http://xxx.lanl.gov/abs/astro-ph/0306214	(no	sub-
scription	needed).	As	discussed	in	the	exercise,	to	infer	the	mass	of	the	black	hole	at	the	centre	of	the	
Milky	Way	one	needs	to	determine	the	period	and	the	semi-major	axis	of	the	stellar	orbit.	These	meas-
urements	should	be	made	in	the	plane	of	the	orbiting	star.	The	observed	locations	listed	and	shown	in	
Schödel		et	al.	(2003)	are	in	the	plane	of	the	sky.	However	Table	1	in	the	exercise	lists	the	coordinates	
in	the	plane	of	the	orbit.	These	results	were	computed	by	rotating	and	deprojecting	the	coordinate	sys-
tem	used	in	Schödel	et	al.	(2003).			

Solution of exercises

Task 1 (optional task)

Have	the	students	isolate	y	on	one	side	of	the	equation																										and	substitute	values	for
x	in	the	expression	on	the	other	side.	They	should	use	a	=	10	and	b	=	5	and	plot	the	result	in	the	(x,y)	
plane.	The	resulting	graph	should	be	an	ellipse	with	semi-major	axis	10	and	semi-minor	axis	5.	They	
should	then	repeat	the	plotting	exercise	with	a	=	10	and	b	=	2.	This	should	make	clear	to	them	that	a	
and	b	correspond	to	the	semi-major	and	semi-minor	axis	respectively.	Finally,	they	should	repeat	the	
plotting	exercise	using	a	=	10	and	b	=	10	to	realize	that	a	circle	is	a	special	kind	of	ellipse.

Task 2 (optional task)

Have	the	students	use:	 π 2

G(m1+m2)
a3

		

Let	them	isolate	(m1	+	m2)	on	one	side	of	the	equation.	The	variables	a	and	P	are	given	in	the	exercise.	
The	result	should	be	the	combined	mass	of	the	Sun	and	Earth	(m1 + m2) = 2.0 × 1030kg.

Task 3

The	students	should	plot	all	positions	listed	in	Table	2	on	a	piece	of	graph	paper	to	scale	or	use	a	plot-
ting	routine	from	a	computer	program.	The	plot	should	look	similar	to	Figure	8	below.	
NB:	It	is	important	to	use	graph	paper	if	method	B	is	to	be	used	in	exercise	4.

Students	should	also	indicate	the	uncertainty	on	the	x	and	y	position	for	each	point.	Alternatively	(to	
save	time),	the	teacher	can	provide	a	graph	with	the	positions.	The	students	should	draw	the	ellipse	
that	best	matches	these	measurements	by	eye.	The	ellipse	does	not	have	to	go	through	the	points	
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exactly	because	of	the	uncertainties	in	the	positions.	The	students	can	measure	the	semi-major	axis	
(possibly	taking	into	account	different	scales	of	x	and	y	axis).	The	students	should	convert	the	result	
from	angular	size	to	physical	size	using	the	fact	that	2	arc-seconds	corresponds	to	82	light-days	at	this	
distance.

Figure 8: Schematic view of the observed locations of S2 in the orbital plane.

The	precise	value	from	a	mathematical	fit	(see	Schödel	et	al.	2003)	gives	a	semi-major	axis	of	the	orbit	
of	S2 = 5.4 ± 0.4 light days.	The	students	should	realize	that	they	probably	have	under	(or	overesti-
mated)	their	uncertainty	if	the	difference	between	their	result	and	the	precise	mathematical	value	is	
much	larger	(or	smaller)	than	their	estimated	uncertainty.

Task 4

This	problem	can	be	solved	by	any	of	the	two	offered	methods.	See	also	the	exercise	itself	for	details	
for	each	method.	

Method A:	From	the	plot	in	exercise	3	the	students	should	draw	lines	from	the	origin	to	the	19	S2	
positions.	The	area	of	each	of	the	18	orbital	segments	can	be	determined	graphically	by	counting	the	
squares.	The	precise	period	of	the	orbit	of	S2 is 15.7 ± 0.7 yr,	given	in	Schödel	et	al.	(2003),	corre-
sponding	to	an	area	of	approximately	45	square	light-days,	or	0.027	square	arc-seconds.	The	value	for	
the	area	is	based	on	an	eccentricity	of	0.87,	quoted	in	Schödel	et	al.	(2003)	and	the	conversion	factor	
of	2	arc-seconds	=	82	light	days	used	in	the	exercise.

Method B:	Be	sure	to	use	an	accurate	enough	scale.

Task 5

Have	the	students	use:		
π 2

G(m1+m2)
	a3

– 0.05 0.00 0.05 0.10 0.15 0.20 0.25
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y 
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Isolate	m1	+	m2.	The	variables	a	and	P	should	have	been	derived	by	the	students	in	exercise	3	and	4.	
The	student	should	obtain	a	result	of	about	6.5	×	1036	kg	(±	2.0	x	1036	kg)	for	(m1	+	m2),	
which	is	3.3 × 106 ± 1.0 × 106 solar masses.

Task 6

The	students	should	derive	the	number	of	suns	Nsun	from:
Nsun	=	[mass	of	black	hole	from	task	5]	/	[mass	of	Sun	(=	1.989	x	1030	kg)]	=	3.3 × 106

Following	this	they	should	compute	the	expected	luminosity	from	these	Suns	by	multiplying	the	given	
luminosity	of	the	Sun	by	Nsun,	i.e.,	Nsun	×	4	×	1026	W	=	1.24 × 1033 W

The	students	should	now	compute	the	apparent	magnitude	(mapp)	of	the	Sun	at	the	centre	of	the	Milky	
Way	using	the	distance	modulus.	Magnitudes	and	modulus	are	explained	in	the	Astronomical	Toolkit	of	
the	Astro-exercises.	This	will	yield	mapp	=	Mabs	+	5.log(D(pc))	–	5	=	19.3.	The	absolute	magnitude	of	the	
Sun	Mabs	and	the	distance	to	the	Milky	Way	centre	D	are	given	in	the	exercise.	

Lastly,	the	students	have	to	compute	the	apparent	magnitude,	mapp(nsun),	of	Nsun	Suns	at	the	Milky	Way	
centre.		They	can	do	this	as	mapp(nsun)	=	mapp	–	2.5log(Nsun)	=	3.1.

This	formula	can	be	derived	from	the	definition	of	apparent	magnitude	given	in	the	astronomical	
toolkit.

Task 7

The	students	should	compute	the	escape	velocity	from	the	Earth	using	the	formula	given	in	the	exer-
cise:	Vesc	=	(2Gm/r)	=	11.3 km/s.	The	mass	of	the	Earth	(m)	and	the	radius	(r)	are	given	in	the	exer-
cise.

Then	the	students	should	recompute	the	escape	velocity	for	Earth	similarly,	but	using	a	radius	=	0.5cm.	
This	will	yield	an	escape	velocity	=		4.0 × 108 m/s.

Lastly,	the	students	can	compute	the	escape	velocity	from	Earth	if	its	mass	were	to	be	
2.2	×	103	msun	=	4.37580	×	1033	kg.	This	yields	an	escape	velocity	=	3.0 × 108 m/s.

Task 8 (optional task)

The	students	should	compute	their	own	radius	if	they	were	a	black	hole	by	rewriting	the	formula	for	the	
escape	velocity:	r	=	2.0	Gm/Vesc

2	 .	The	student	should	then	fill	in	their	mass	(m)	and	the	speed	of	light	
(299792.458	km/s).	For	a	body	mass	m	=	60	kg,	the	result	is	8.9 × 10-26 m.

Feedback

Please	do	not	hesitate	to	contact	us:	Hubble	European	Space	Agency	Information	Centre	(hubble@eso.
org)	with		specific	questions	or	for	more	general	information	about	the	exercise.	We	would	very	much	
appreciate	feedback	on	the	exercise	so	that	we	can	improve	subsequent	versions.	
 








