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ABSTRACT

Panagia et al. (1991) have measured the distance to the Large Magellanic Cloud, D;yc = 50.1 + 3.1 kpc
from the fluorescence of the ring around SN 1987A, which was assumed to be circular. I recalculate Dy yc
using the supernova-ring method and the data of Panagia et al. both with and without the assumption that
the ring is circular. For a circular ring, I find Dy yc = 53.2 £ 2.6 kpc, 3 kpc larger than the result of Panagia et
al. For a ring of intrinsic eccentricity e the distance is smaller than for a circular ring by a fraction ~0.4e*,

ie., only 1% for e = 0.4.

Subject headings: cosmology: theory — Magellanic Clouds — supernovae: individual (SN 1987A) —

supernova remnants

1. INTRODUCTION

Panagia et al. (1991) have derived a distance to SN 1987A in
the Large Magellanic Cloud (LMC) from the light curve of the
ring illuminated by the supernova. They find a distance of
51.2 £+ 3.1 kpc. Correcting for the position of the supernova
relative to the LMC center of mass, they find a distance to the
latter of

Dyyc = 50.1 + 3.1 kpc  (Panagia et al.). (L.1)

The determination by Panagia et al. (1991) of the distance to
the supernova ring rests on three assumptions.

1. The observed ring of illuminated gas is indeed a thin
planar structure, rather than a density caustic in a three-
dimensional (e.g., ellipsoidal) structure.

2. The caustics in the ionized emission curves seen at 83 + 6
and 413 + 24 days identify the extreme light travel times for
the paths going from supernova to ring to observer.

3. The ring is actually circular and appears elliptical because
it is seen in projection.

Once these three assumptions are accepted, only geometry
enters the calculation. The systematic errors are therefore small
compared to the statistical errors and the measurement should
be taken at face value.

In § 2, I review the Panagia et al. (1991) calculation. I show
that the first assumption is well-founded in the data. The
second assumption is qualitatively well-founded. That is, the
caustics do indeed represent the extreme light travel times;
however, the specific estimates and error bars of these caustics
may require some revision. The third assumption is not well-
founded. Thus, the major uncertainty concerning the
supernova-ring measurement of Dy ¢ is systematic. The ques-
tion is, how much does the distance estimate change if one
relaxes the assumption of circularity ? I address this question in
the present paper. For this purpose, I adopt the light travel
times of Panagia et al. (1991). In Paper II of this series I will
reanalyze the light-curve data and derive new estimates for the
light travel times and their errors. Using these new estimates
and the general formulae derived in the present paper, I will
then present a revised estimate of Dyyc. In Paper III of this
series, I will discuss the implications of this measurement for
cosmology.

In § 3, I recalculate Dy yc under the assumption of a circular
ring and find

Dyyc = 53.2 + 2.6 kpc  (circular ring) . (L.2)

The difference between this value and that given by Panagia et
al. (eq. [1.1]) is due to two approximately equal effects. First, I
have made a more careful analysis of how the observations of
the ring should be combined to obtain a best estimate of the
distance to SN 1987A. Second, I have adopted the value used
by Jacoby et al. (1992) for the relative distances of SN 1987A
and the center of mass of the LMC. In § 4, I relax the assump-
tion that the ring is circular. I find that the distance estimate is
thereby reduced by a fraction ~0.4e*, where e is the intrinsic
eccentricity of the ring. For small to moderate eccentricities
(e < 0.4), this correction is negligibly small, <1%.

2. THE PANAGIA ET AL. MEASUREMENT

The measurement of the distance to SN 1987A by Panagia et
al. (1991) rests on the three assumptions enumerated above in
§ 1. Briefly, the argument given by Panagia et al. is as follows.
For a circular ring, the light travel times to the far and near
sides of the apparent minor axis (less the light travel time
directly from the supernova) are

ty = 4 (1 +sini), (2.1)
2c

d .
t_ = % (1 —sini), 2.2

where d is the physical diameter of the ring and i is the angle of
inclination of the plane of the ring to the line of sight. The first
term in these equation is the travel time from the center to the
circumference of the ring. The second term is the travel time
from the plane of the ring to the plane of the sky at the ring
circumference. From equations (2.1) and (2.2), one finds

t+‘_t_
te +t_

Alternatively, one may estimate the angle of inclination from
the apparent axis ratio of the ring

sin i = 2.3)

0_
j =— 2.4
cos i ==, (24

+
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where 6, are the major and minor angular diameters of the
apparent ellipse.

Panagia et al. model the light curves to determine ¢, and
find

t, =413 + 24 days, t_ =83 + 6 days. (2.5

From these and equation (2.3), they make one measurement of
the inclination, i = 42° 4+ 5°. They then use the ellipse diam-
eters measured by Jakobsen et al. (1991),

0, =1"66 + 0703, 6_ =121 £0703, (2.6)

and equation (2.4) to make another measurement of the incli-
nation, i = 43° + 3°. (I estimate smaller error bars on both
inclination measurements; see § 3). They combine the two mea-
surements to form an average value (i) = 42°8 + 2°6, substi-
tute into equation (2.1) to find d, and compute the distance to
SN 1987A,4d/6, = 51.2 + 3.1 kpc.

Before proceeding to an examination of the assumptions
that underlie this calculation, I note that equations (2.1) and
(2.2) play symmetric roles in the distance derivation and either
might have been used in the penultimate step to derive the
physical ring diameter, d. If Panagia et al. had used equation
(2.2), they would have found d/6, = 54 kpc, almost 1 ¢ higher
than the value derived using equation (2.1). I return to this
point in the next section.

I now turn to the assumptions. The ring appears planar, but
as Dwek & Felten (1992) have emphasized, one should be
cautious. Planetary nebulae are ellipsoidal shells and often
appear as ellipsoidal rings in projection. Crotts & Heathcote
(1991) have measured the redshift of the ring emission and find
expansion (or contraction!—see McCray & Lin 1993) along
the minor axis but essentially no expansion along the major
axis. This is consistent with a ring seen with an inclination
vector that is approximately aligned with the apparent minor
axis but not with an ellipsoid. Dwek and Felten adduce a
second argument that the ring structure is indeed planar,
namely, that there is a delay of ~80 days between the super-
nova and the beginning of the fluorescent emission. This is
characteristic of an open topology, such as a ring tilted to the
line of sight, but not a closed topology such as an ellipsoid.

Another nonplanar geometry should also be considered. The
ring may well be a “belt ” around the center of the hourglass in
the Napoleon’s Hat nebula (Podsiadlowski, Fabian, & Stevens
1991). In this case, there might be a near-cylinder of gas extend-
ing out of the ring plane. However, since the ring is inclined at
~45°, such a cylinder would appear almost exactly like a ring
with finite thickness in the plane, and the effect on the timing
arguments would likewise be almost exactly the same. Thus, to
the extent that this goemetry is allowed, it has no special conse-
quences for the problem.

Once the geometry is established as planar, the meaning of
the caustics seen in the light curve (see Fig. 2 of Panagia et al.)
is clear: a burst of light incident on an arbitrary, smooth,
convex, reflection nebula will always produce caustics in the
light curve at the extreme times of reflection. The supernova
ring does not reflect, but rather fluoresces, and therefore the
(theoretical) reflection light curve must be convolved with a
transfer function which characterizes the fluorescence.
However, only a pathological transfer function could create,
destroy, or move the caustics in the underlying reflection light
curve. The one possibility that really must be considered is that
the fluorescence has an extremely slow start-up and peaks very
quickly well after the burst of illumination. Such a possibility
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must be considered for the N v line, which is permitted and
hence may be optically thick. However, the remaining three
lines measured by Panagia et al. (N n1], N 1v], and C 1)) are
semiforbidden and thus optically thin. Since the recombination
time is about four orders of magnitude longer than the span of
the observations, there would appear to be no physical mecha-
nism that could produce a delayed start up for the semi-
forbidden lines. Thus, the assumption that the caustics
represent extreme light travel times is qualitatively well-
founded.

Dwek & Felten (1992) agree that caustics represent extreme
travel times but have raised an important question regarding
the accuracy of the specific estimates (2.5). They show that for a
ring the reflection function (which is convolved with the trans-
fer function to obtain the light curve) is given by

AOU-x)O(+x) . At —t

R[x(t)]=n \/m—z' P ()—T_t—_—’

where @ is the Heaviside step function and A is the normal-
ization. By contrast, Panagia et al. use the form

2.7)

R(x) = % O(1 — x)O(1 + x) (approximation). (2.8)

Panagia et al. argue that their approximation should not affect
the location of the caustics and Dwek & Felten offer no specific
argument to contradict them. However, in Paper I, I will show
that equation (2.7) yields a much sharper peak at the second
caustic than does equation (2.8). This peak is clearly present in
the best data set (N 11]) in a cluster of six points at ~ 390 days.
A peak is also visible at ~390 days in the N 1v] data. The
Panagia et al. fit at 413 days appears reasonable only because
they have been boxcar-smoothed over eight points and only
because the left-hand-side of the peak of their curve is much
broader than the left-hand-side of the true peak. Hence, Dwek
& Felten may be correct in their contention that using equa-
tion (2.7) can have a significant impact on the result. Finally, I
note that in their Table 1, Panagia et al. report four indepen-
dent measurements and errors for each of the quantities, ¢,
and ¢_. Taken together, these results have a x> per degree of
freedom of 0.05 for 6 degrees of freedom. If the errors have been
correctly estimated, then the probability for such a low y? is
0.0005.

In brief, the data should be reanalyzed taking account of
equation (2.7) and the possibility of a finite rise time for the N v
line. Nevertheless, since the basic assumption that the caustics
represent extreme travel times is correct, one can use this
assumption to derive formulae for the distance to the super-
nova. If the estimates for ¢, and their errors are subsequently
revised, the new values can be substituted into these formulae.

The third assumption, that the ring is intrinsically circular, is
less secure than the other two. Panagia et al. give two argu-
ments for circularity. First, they say that “it is physically very
hard to produce a high-eccentricity structure centered on its
source (p. L23).” Second, they point to the agreement in the
inclinations as calculated from equation (2.3) and (2.4) as being
consistent with the hypothesis of a circle. Neither of these argu-
ments is compelling.

The fact that the inclinations as calculated from equations
(2.3) and (2.4) are consistent with a circular ring does not make
the ring circular. I construct explicit counterexamples below.
The fact that we cannot think of a mechanism to produce an
ellipse does not mean that an ellipse is excluded ; nature is more
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clever than we are. For example, the gas in the ring is clumpy,
which may result from inhomogeneities in the medium into
which it is expanding. Such inhomogeneities might deform an
initially circular ring to be elliptical.

3. CALCULATION FOR A CIRCULAR RING

Here 1 recalculate the distance to SN 1987A under the
assumption that the ring is circular. In doing so, I introduce
most aspects of the formalism that will be required for the
noncircular case. The value that I derive for the distance is 1.5
kpc larger than that derived by Panagia et al.

First, I define four new multiplicative combinations of the
measured quantities:

ty =./t,t_ =185+ 9 days, 3.1
0. =1/0,0_ =1742+002, 3.2)
n = i—' — 0201 + 0019, (3.3)
+
and
0.
o= 5= = 0.729 £0.022. (3.4)

+

The correlation coefficients of ¢, with », and 6, with #, are
0.15 and 0.3, respectively. The four other pairs of quantities are
independent.

From equations (2.1) and (2.2), one finds that t, = (d/2c)
cos i. Equation (2.4) implies that 6, = (d/Dgy) +/cos i, where
Dgy is the distance to the supernova. Hence,

Dsx = D G(i) , (3.5
where
D, scf)i=22.6i 1.1 kpc, (3.6)
and
G(@i) = 2./sec i . 3.7

Under the assumption that the ring is circular, the inclination
can be measured by two independent methods. First, from 7,
using equation (2.4),

i=cos !n, =432+ 18, (3.8)

and second, from 7,, using a transformation of equation (2.3),
i=’2—t—2tan—1\/ﬁ,=41?7iz?o. (3.9)

In both cases, I have determined the error bars by using the
chain rule. Since the methods are independent, they can be
combined to yield i = 42°5 + 1°4, or

G(i) = 2.329 + 0.025 . (3.10)

The quantities D, and G(i) are virtually independent
(correlation coefficient ~0.01), so the errors in equation (3.5)
can be combined in the standard way to yield

Dgy = 52.7 + 2.6 kpc . (.11

Note that this result is 1.5 kpc larger than that found by
Panagia et al. based on the same data. The reason for the
difference is that by using equation (2.1) alone rather than
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averaging over equations (2.1) and (2.2), Panagia et al. in effect
gave higher statistical weight to some data than others. By
transforming to the new variables, t,, 0., %,, and n,, I have
been able to carry out the calculation with all measured quan-
tities weighted according to their quoted errors.

To find the distance to the LMC, Panagia et al. assumed
that SN 1987A lies 1.1 kpc farther from us than does the center
of mass of the LMC. However, Jacoby et al. (1992) point out
that the eastern side of the LMC disk is known to be closer.
Both the massive star that was progenitor to SN 1987A and
the entire 30 Dor region in which it lies are Population I
objects and therefore very likely lie in the plane of the LMC,
implying that SN 1987A is 0.5 kpc closer than the LMC center
of mass.! I adopt this correction and find

Dive = 53.2 + 2.6 kpe . (3.12)

4. CALCULATION FOR AN ELLIPTICAL RING

The formalism developed in the previous section for a circu-
lar ring can be generalized to the elliptical case. The resulting
equations can be solved analytically in limit of small eccentric-
ity, e, that is, for e? < 1. To first order in e?, the distance
measurement is unchanged from the circular case. To second
order, a finite eccentricity moves the LMC closer by a fraction-
al amount ~ 0.4(e?)2. This systematic effect becomes significant
(relative to the statistical errors) when e 2 0.55, that is, for axis
ratios b/a < 0.85. A numerical solution confirms these analytic
results.

Suppose that the ring has major and minor semiaxes, a and
b, and that the unit vector normal to the plane in which it lies is
inclined to the line of sight at an angle i. Let ¢ be the position
angle of the minor axis relative to the line in the plane which is
maximally inclined to the line of sight. The geometry of the
ellipse is then characterized by its distance Dgy, its physical
scale, a, and three dimensionless parameters, i, ¢, and e, where

F=l-— @.1)

Projected on the sky, the ellipse will appear as a smaller ellipse.
I label the projected major and minor semiaxes, a’ and b'. The
product of these axes is proportional to the area of the project-
ed ellipse, that is,

ab =abcosi. 4.2)

After some algebra (see Appendix), one finds that the ratio of
the axes is

% =f(i’ ¢’ e) - \/fz(i’ d’, e) -1 > (43)

where

fG, ¢, e) = % (% + é)(sec i + cos i)

- f—:)(sec i—cosi)cos (2¢). (44)

L A large amount of material lies ~300 pc in front of the supernova, and
therefore one might plausibly argue that this material represents the plane of
the LMC, placing SN 1987A slightly farther back. However, this discrepancy is
small compared to the other errors in the problem.
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Let y be the position angle of an arbitrary point on the
ellipse. The distance from the supernova to that point is then
given by

r? = a?sin? (y — ¢) + b% cos? (y — @) . 4.5)

The light travel time from the supernova to an arbitrary point

to the observer (less the time of travel directly from the
supernova) is

= E (1 + sin i cos 7) . 4.6)

This equation may be rewritten as

t—£g(l b, e7), @7

where
g, ¢, e, 7) = /1 + &1 + sin i cos )
2
x \/1 — = _cos@y—2¢), (48)
2—e
and

(@—b? ¢
2ab 8"
The caustics in the light curve occur at extreme times, which

are found by differentiating equation (4.7) and setting dt/
dy = 0. Thus, the caustics lie at the y which solve the equation,

E= 4.9)

2

- — [esc i sin (2 — 2¢) + sin (37 — 29)] .

siny=2

(4.10)

This equation has at least two solutions. The cases that have
more than two solutions correspond to light curves with more
than two caustics. Since the actual light curve has only two
caustics, I will ignore the more complicated cases.? I label the
coordinates of the two solutions y . and define g by

gi(is ¢’ e) = g(la ¢’ e, yi) . (411)

The measurable quantities defined in the previous section
may now by written in terms of the parameters of the ellipse:

\/—\/g+g- , (4.12)
0 =25@«/cosi, (4.13)

Dgn

n=2=, (4.14)
g+

me=f—f*—1, (4.15)

2 Numerically, I find that the regions of parameter space with more than
two caustics are adjacent to the regions that are permitted with low probabil-
ity. They have lower inclinations than the permitted regions. An easy-to-
visualize case of extra caustics was pointed out to me by the referee: consider a
high-eccentricity ellipse whose minor axis is parallel to the line to sight. The
first caustic comes from the near side and the second from the far side. A final
caustic comes from points on the major axis.

and
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where fand g, are given by equation (4.4) and (4.11). Hence,
one may generalize equation (3.5) and write

DSN = Dx G(i7 ¢9 e) ’ (4'16)
where
GG, ¢, e)=2 |21 @.17)
g+9-

The problem can now be solved by using the observed values
of , and 7, together with equations (4.14) and (4.15) to con-
strain the ellipse parameters i, ¢, and e. For the allowed
parameters, one may evaluate G and thus the distance Dgy
using equations (4.16) and (4.17).

Of course, it is impossible to evaluate the three ellipse
parameters with only two equations. Even with perfect data
there would be one degree of degeneracy in the allowed range
of these parameters. However, the primary interest is not in
these parameters per se but only in the distance that they
imply. In order to explore the nature of this degeneracy and its
implications for Dgy, I begin with a perturbative solution to the
equations, expanding in the parameter € = ¢. For simplicity, I
assume that the data are perfect and that the measured values
of 1, and n, imply the same inclination i, when a circular ring is
assumed (see eqs. [3.8] and [3.9]).

4.1. Zeroth Order

From equation (4.10), y, o = 0 and y_ o = m. The position
angle ¢ is indeterminate, that is, all values are equally accept-
able. For purposes of continuity with the first order equation,
however, I choose ¢, = /4, cos (2¢,) =0. From equation

(4.8),9+.09-,0 = cos’ iy

4.2. First Order
From equation (4.10),
(csc ipb—1).

€ .
y+,l=_5(08010+1)’ y—l_n+

(4.18)
Note that for an elliptical ring, the caustics do not come from
opposite sides of the ring, thatis,y_ ; — v, ; # n. From equa-
tion (4.8), I find

g-, 1—sini;
g+ 1+sini’

(4.19)

which, together with equation (4.14), implies that to first order
there is no change in the inclination,

i =i . (4.20)
Equations (4.4) and (4.15) require that

cos ) = — % Q@ csc?ig— 1), @21)

and I choose ¢, ~ m/4. With this result, equation (4.8) implies
that

g+.19-.1 =cos® iy . 4.22)
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Inserting equation (4.22) into equation (4.17) and comparing
with equation (3.5), we see that to first order in 2, the distance
determination is independent of eccentricity.

4.3. Second Order

Substituting the first-order parameters into equation (4.8)
yields

1 +4csc?i
G420 = (1 + —y 62) cos?iy.  (4.23)

This implies that to second order, the distance is reduced by a
fraction 0.40e*:

Dgn = 2D, </sec i(1 — 0.40e%) . (4.24)

4.4. Geometrical Interpretation

There are two observational constraints on the geometry of
the ellipse: the apparent axis ratio and the timing ratio.
Suppose that these are consistent with a circular ring at incli-
nation i. Any ellipse that lay at this inclination and had its
minor axis aligned with the inclination would have a larger
apparent axis ratio than the observed one. If the major axis of
the ellipse were aligned with the inclination, the apparent axis
ratio would be smaller. Hence, there will always be some inter-
mediate position angle where the ellipse has the same apparent
axis ratio as a circle with the same inclination. The above
perturbative analysis tells us that this occurs when the position
angle is n/4 + O(e?), that is, halfway between the axes. For an
ellipse in this position, the timing ratio is very similar to the
circular case, exactly the same to first order in e. The reason is
that while the positions with extreme delay times no longer lie
along a diameter, the change in the light-travel times from the
diametric case is second order in the angular displacement and
hence O(e*). For an ellipse with position angle ¢ = n/4, the
relevant linear dimension for light travel is \/a'b’ sec i. Since
the physical scale of the ring is judged from the deprojected
area mD% 0, 0_ sec i, one infers essentially the same distance
for an elliptical ring as one would for a circular ring. As the
eccentricity becomes large, however, two effects come into
play. First, the light path deviates considerably from a straight
line across the ellipse. The observed time delays are therefore
longer than would be for the case when the two extreme trajec-
tories lay along a single straight line. One therefore overesti-
mates the distance to the supernova if one assumes a circular
ring (for which the light paths do lie along a single straight
line). Second, the position angle that reproduces the observed
projected geometry lies slightly closer to the major axis than to
the minor axis. Hence, the projected diameter which most
closely approximates the extreme light trajectories is slightly
larger than 2./a’'b’. The light-travel time is therefore longer
than it would be for a circular ring having the same apparent
size. This also causes one to overestimate the distance.

4.5. Numerical Solution

It is straightforward to solve equation (4.10) numerically.
One may then find the predicted values for #, and #, for any set
of ellipse parameters i, ¢, and e. The likelihood of the data
given the model can be evaluated by assuming Gaussian mea-
surement errors. In principle, one should multiply this prob-
ability by the prior probability of the set of ellipse parameters
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Fi1G. 1.—Likelihood contours as a function of e? and G/G,, where e is the
eccentricity, G(i, ¢, e) is a parameter which enters the determination of D, ¢,
and G, = 2.33 is the value of G for a circular ring (e = 0). Likelihoods are
averaged uniformly over the angular variables sin i and ¢. The contours m = 1,
2, and 3 are shown as solid curves, where exp (—m?/2) = L/L,,,, and L is the
likelihood. The second-order perturbation result, G/G, = 1 — 0.40e* is shown
as a dashed curve. Note that for fixed e?, the uncertainty in G is small com-
pared to the uncertainty of D, , the other quantity that enters Dy .

and sum over the whole of parameter space. The prior prob-
ability of the orientation parameters i and ¢ is well deter-
mined: we have no prior knowledge of how the ellipse is
oriented, so the prior distribution is uniform in sin i and in ¢.
By contrast, there is no generally agreed upon prior probabil-
ity for the eccentricity. For example, Panagia et al. believe that
it is “physically very hard” to produce eccentricity. I argued
that the ring might be eccentric. I avoid this controversy by
summing over the orientation angles but reporting the differ-
ential distribution in eccentricity.

Figure 1 shows likelihood contours for G/G, versus e?,
where G, = 2.33 is the best estimate of G for the circular case
(e* = 0). The contours form a sharply peaked ridge. For a
given eccentricity, the measurement uncertainty of G is small
compared to the uncertainty of D,, and it can therefore be
ignored. However, the systematic uncertainty due to the pos-
sible eccentricity of the ring may be important. To find the
most likely value of G, one must estimate the prior probabil-
ities of e* and sum over this variable. If one believes that the
probability of e¢? 204 is extremely low, then G = G,.
However, even if one relaxes all prior constraints on e2, one
still obtains a hard upper limit,

G<Gy=233. 4.25)

Substituting this equation into equation (4.16), I find an upper
limit on Dgy and therefore an upper limit on Dy yc of

Dive < 53.2 + 2.6 kpe . (4.26)
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APPENDIX A
THE ELLIPSE IN PROJECTION

Suppose that an ellipse has semimajor and semiminor axes a and b. Let ¢ be the position angle of the minor axis relative to the
y-axis, and let y specify the angle of a point on the ellipse relative to the y-axis. Then the (x, y) coordinates of the ellipse are given by

x=asinycos ®+bcosysin¢; y= —asinysin ¢+ bcos?ycos ¢ . (A1)

Now suppose that the plane of the ellipse is rotated by an angle i about the x-axis. The coordinates of the projected ellipse will be
% = x, j = y cos i. Hence, the projected radius, p = (X% + 7%)*/2 as a function of the parameter y, is given by

p*(3) = A — B cos (23) + C sin (2y) , (A2)
where
A = 4[(a® + b*)(1 + cos? i) + (a* — b?)(1 — cos? i) cos (2¢)] = (ab cos i) f,
B = $[(@®* — b3 + cos? i) + (a® + b?)(1 — cos? i) cos (2¢)] , (A3)
C = tab(1 — cos? i) sin (2¢) ,
and where fis given by equation (4.4). Note that
B? + C? = (ab cos )} (f> —1). (Ad)

The major and minor axes of the projected ellipse are defined by the maximum and minimum values of p(y). From equation (A2),
these are found at values of y defined by

B
tan 2y) = — —. A
an (2y) C (A5)
The two roots of equation (A2) are therefore
pi, =A% (B*+CH'2. (A6)

I designate the projected axes a’ = p, and b’ = p,. Equations (A6) and (A4) then imply that na’'d’ = mab cos i. From equation (A6), I
then find

b A—(B*+CH'

Z = A7

a [AZ _ (BZ + C2)]1/2 4 ( )
which can easily be evaluated using equation (A4) to yield equation (4.3).
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